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Constraint Embedding in Kinematics and Dynamics of
Hybrid Manipulator Systems

Whang Cho·
(Received March 5, 1993)

An approach to kinematics and dynamics based on kinematic influence coefficient matrices is
proposed for applications to the analysis and control of motion controlled multibody systems,
e.g., hybrid robotic manipulator systems. The scheme is unique in a sense that all the kinematic
constraints are completely embedded into the formulations at the kinematics level and equation
of motion of the system is obtained in a closed form with respect to the minimal set of
independent joint coordinates. Furthermore, all kinematic and dynamic formulations are
expressed compactly in the same format by using two special algebraic operators. This isomor­
phic formalism allows systematic transformations of kinematic and dynamic informations
between different sets of coordinates in a purely algebraic way.

Key Words: Hybrid Robotic Manipulator, Multibody Dynamic System, Constraint Embed­
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1. Introduction

During last two decades, and important sub­
class of kinematic and dynamic systems which
deal with the behavior of connected rigid bodies
undergoing kinemetically planned motions
received considerable attention in robotic engi­
neering community as it may be reflected on
enormous amount of literatures published in
related fields. While most of these efforts were
concentrated on robotic manipulators of serial
type, hybrid robotic manipulator systems which
contain closed kinematic chains in system topol­
ogy are being proposed to realized systems with
larger 5,tructural stiffness, required studies on
kinematics and dynamics of hybrid robotic
manipulator systems become very active recently.
In Luh et al.(l985) a simple extension of recursive
Newton-Euler scheme was made by using conven­
tional Lagrange's multiplier technique to take
kinematic constraints into account. Later in
Nakamura(l989) the explicit use of the Lagrange'
s multiplier was eliminated by directly using the
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first order constrained relationship among time
rate of changes of joint coordinates. Similar ap­
proaches can be observed in Rosenberg(l977),
Murray et a!. (I 989), and Wittenberg(l989). An
additional care was taken in Murray et al.(l989)
to compete with the situation in which sensors for
the measurements of joint position and velocity
are located at different joints from those
actuated(i.e. noncollocated system).

Note that all. of these approaches address
kinematics and dynamics directly in joint space
and provide no explicit ways to relate motion
informations of independent joints to Cartesian
space counterparts. This fact makes it difficult to
apply Cartesian space motion control schemes,

.which was originally developed for serial robotic
manipulators (refer to Khatib, 1987; Whitney,
1969; Luh et a!', 1980 and Hogan, 1985), to
hybrid type systems. Noting that Cartesian space
motion control schemes possess advantage of not
requiring inverse position analysis, which is bur­
densome and inevitable step required in joint
space motion control techniques, it is desirable to
retain this feature of Cartesian motion control
scheme in controlling hybrid type robotic manip­

ulator because the structural complexity of hybrid
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robotic manipulators is generally much higher
than serial type ones.

Though Cartesian motion control schemes may
remove the burden of performing inverse position
analysis, they require rather complete kinematic
and dynamic informations of the given manipula­
tor systf:ms. Resolved acceleration scheme(Luh et
aI., 1980), for example, requires expressions of
motions of end-effector up to the second order in
terms motions of joints where position and veloc­
ity sensors are located. As another example, direct
control scheme of dynamics in Cartesian space
(Khatib, 1987 and Hogan, 1985) requires
dynamics in addition to the second order endef­
fector motion informations to be expressed in
terms of motions of independent joint coordi­
nates.

As pointed out previously, for the varous struc­
tural desgn and efficient control of a programma­
ble motion generation mechanisms like robitic
manipulators it is essential to express kinematic
informations of end-effector (or any point of
interest in motion of the system) in compact for in
terms of time rate of chages of minimum number
of joint coordinates (i. e., generalized coordi­
nates). Although this task becomes trivial for
serial type manipulator systems there a number of
different ways of choosing generalized coor­
diantes depending on how the given kinematic
constraints are resolved. The kinematic and
dynamic modeling algorithm presented in this
paper is aimed to answer those problems. The
main step used here is to completely resolve the
kinematllc constraints up to the second order so
that both velocity and acceleration informations
can be expressed in terms of displacements of
properly selected joint coordinates(i.e., a subset of
Lagrangian coordinate) and time rate of changes
of minimum number of independent joint coordi­
nates in dosed forms. The systematic procedure of
incorporating constraints into kinematics and
dynamics may be called the second order con­
straint embedding.

Actual procedure of constraint embedding will
be performed by using the concept of kinematic
influencf: coefficient (KIC), which was first

introduced in dynamic system modeling in

Benedict et al.(l978) as the modern equivalent of
the foundation work given in Wittenbauer(l923),
and since then extensively used in Thomas( 1982),
Cho et al.(l989), Cho(l989). It is worth noting
that the first order external kinematic influence
coefficient shares conceptual similarty with the
linear and angular partial velocity concept used
in Kane et al.( 1985). However, the second order
external kinematical influence coetricient first
introduced by Thomas et al.(l982) has no coun­
terpart in Kane et al.(l985) and has been Proved
to be essential in the systematic tracking of accel­
eration information for multi body dynamic sys­
tem (Thomas et aI., 1982) and also in antagonistic
stiffness modeling of redundantly actuated system
(Cho et aI., 1989 and Yi et aI., 1989)

Advantages of the approach developed in this
paper are as follows: First of all, since the infor­
mations on the displacement of dependent joint
coordinate can be readily obtained through mea­
surements in on-line applications or by solving
given kniematic constraints in off-line simula­
tions, all the kinematic formulations can be done
as if no kinematic constraints are involved in the
system. Notice that various cartesian space mo­
tion control schemes (Khatib, 1987; Whitney,
1969 ; Luh et aI., 1980 and Hogan, 1985) and
motion planning of kinematically redundant
manipulator system (Klein et aI., 1983, Yoshik­
awa et al. and Hollerbach et aI., 1987) utilize
expresssion of end-effector Jacobian matrix and
evaluation of its time rate of changes w.r.t. in­
dependent joint coordinates. In view of this obser­
vation, approaches proposed in Luh et al.(l985),
Nakamura( 1989), Murray et al.( 1989) and
Wittenberg(l989) provide no explicit kinematic
informations (e.g., expression of the velocity and
acceleration of the end-effector w.r.t. the motion
of independent joints) of the systems and address
dynamics of the system directly in joint space by
assuming required informations on joint motion
are obtained by proper means for the given desir­
ed end-effector trajectiory. Next, the equation of
motion of the system may be readily obtained also
in closed form in terms of minimal set of joint
coordinates by using commonly employed tech­
niques, e.g., Newton-Euler scheme (Luh et aI.,
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Fig. 1 Topology of a conceptual dynamic system

where two index functions, p(i) and sci) are
defined as

where I;(i = I, ... , M) are at least twice differ­
entiable functions with respect to (w.r.t.) their
arguments y,. Eq. (I) may be rewritten as

(I)

(2)

(3)

(4)

¢i= 7/JPU) with i= I, ... , N

Q;=7/JsU) with i=l, ... , M

f( y" q)=O

u, i.e., u={u;: u;EZ+ with i=l, ... , j} where
Z+ denotes the set of positive integers and J is the
total number of simple joints contained in the

system.
A set of independent holonomic constraints in

terms of proper Lagrangian coordinates (In this

paper, the term Lagrangian coordinates is used to

denote any abundant set of coordinates, not
necessarily independent) y,E RJ may be expres­

sed in vector form as

where {lER N denotes generalized coordinate
vector used to describe the kinematics and

dynamics of the system possessing N degree of
freedom and vector qERM represents any redun­

dant set of coordinates involved in Y,E RJ with J
= N +M. The selections of independent coordi­
nate vector ¢ and dependent coordinated vector q

from Lagrangian coordinate vector y, may be
formally described as

and

2. Kinematic Constraint Resolution

1980), Lagrange's equation(Thomas et aI., 1982
and Hollerbach, 1980), and Lagrange's form of d'
Alembert's principle (Cho, 1989 and Kane et aI.,

1985), without any extra attentions being paid to

the kinematic constraints. Finally, the idea of the

second order constraint embedding enables one,
at the levels of generalized velocity and accelera­

tion, to transform, in pureley algebraic fashion,
the kinematic and dynamic informations expres­

sed in terms of one set of generalized coordinateds

into different set of generalized coordinates(or
non-integrable coordinates, i.e., pseudo­

coordinates). This benefit comes mainly from the

fact that kinematics and dynamics are isomor­
phically expressed exclusively in terms of general­

ized velocity and acceleration. From modeling

and control point of views, it is necessary that
both kinematic and dynamic informations
modeled by using one set of generalized coor­

diantes be easily transformed into another coordi­
nate system(or pseudo-coordinates, e.g., opera­
tional space coordinate(Khatib, 1987), so that

various modeling schemes can be readily unified.

This paper is organized as follows. In section 2,
a systematic procedures for finding the relation­

ships between dependent and independent coordi­
nates are given. Using these relationships

kinematics and dynamics problems of constrained

muitibody dynamic system are addressed in sec­
tion 3 and section 4 successively. In section 5,
transformation technique of kinematic and

dynamic informations between different coordi­
nate systems is demonstrated through examples,
and finally some conclusions are derived in sec­

tion 6.

Consider a multibody dynamic system which

contains several closed kinematic chains in its
total kinematic structure as shwon in Fig. 1. Note
in Fig. I that all the joints are assumed to be
simple (i.e., it allows only one degree of freedom
of relative displacement displacement) without
loss of generality and numbered by using positive
integers. The set of joint indices used to index all
the simple joints in the system will be denoted by
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To fBlcilitate development of algorithm by proper­
ly idf:ntifying the corresponding components of t/J
or q for the given Lagrangian coordinate vector
Wi' the inverse relationships p( • ) and ~( • ) of P
U) and sUI, respectively, are also defined as

and
p( • ) : {I, ... , N} -+ u

s(· ):{I, ... , M}-+ u

(5)

(6)

assuming that the first order rate relation between
t/J and q may be obtained directly in the form of
Eq. (13) without explicit differentiation process.

The second order rate relations between depen­
dent and independent coordinates may be
obtained by differentiating Eq. (9) and using Eq.
(13) as

g=[G] {;+ ~T®I/H1I®~ (14)

Using this definition Eq. (10) can be written as

where [a//at/J] is a matrix of RMxN whose i th

row and j'h column element is a/..;arPj and [aj /
aq] is a matrix of R MXM with a/./aqj as its i th

row and j'h column element. Solving Eq. (9) for
q, it (:an be found that

The first order internal KIC matrix IS usually
called Jacobian matrix and its transposed form is
frequently used in finding generalized force bal­
ance between two coordinates t/J and q. Note that
although not pusued here, the system with non­
lolonomic constraints can be similarly treated by

lI_li~11 -~ (17)at/Jat/J kif - arPiarPj

II-£LII -~ ( 18)aqat/J kif - aqiarPj

II£LII-~ (19)-aqaq kif - aqiaqj
and

II~-II-~ (20)at/Jaq kif - arPiaqj

IIBII=/I a~3t/J 1/= - [ifrffill~t/J /I

-[GV®([*r\Blla~!qID®[G]

-([ifrffi I! a~fq II)®[G]

-[Gy®([-*rffill a~ft/J'I) (16)

In Eqs. (14) and (16), the delimiter II . II denotes a
three dimensional matrix and three dimensional
quadratic operator ® and generalized dot prod­
uct operation ffi were introduced for the expres­
sional compactness and readiness in computer
coding(refer to Appendix for definitions). Notice
that the three dimensional matrices introduced in
Eq. (16) are constructed such that they are consis­
tent ffi with ®operations, and defined as

where

where indices k, i, and j denote the corresponding
plane, row, and column, respectively.

The three dimensional matrix l/illlERMXNXN
will be refered to as the second order internal
kinematic influence coeffcient matrices of the
system. When the set of constraints are holonomic

each plane of IIBII is made of symmetric matrix of
R NXN , which explains the fact that it is the gener­
alization of the Hessian matrix defined for a
scalar function of a vector variable. When non­
holonomic constraints are involved, each plane of

IIBII, whose elements are expressed by the first

(7)

(8)

(9)

(10)

(13)

p( • ) : u -+ {l, , N}
~( • ) : u -+ {l, , C}

. = - [1LJ-l[lLJ ~q aq at/J

q=[G]~

Thc~ fundamental idea of constraint embedding
lies in the simple fact that motions of dependent
coordinates, i.e., q and ij can be found in terms
of the counterparts of generalized coordinates t/J
by using kinematic constraint equation. This
procedure is strainghtforwards and described
briefly below.

Diflferentiation of Eq. (2) w.r.t. time leads

where the nonsingularity of matrix [af/ aq] is
assumed, and proper selection of generalized
coordiantes rP and dependent coordiantes q easily
ensures this condition due to the independence of
constraints.

The first order internal kinematic influence
coeffci,ent (KIC) matrix [G]ERMXN of the sys­
tem is defined in Eq. (10) as
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order partial differentiations, is not symmetric in
general due to their non-integrable characteristics.

Note also that the definitions on the matrices
[G] and Ililll given respectively in Eq. (12) and
(16) involve explicit partial differentiations of the
constraints W.r.t. their arguments up to the second
order. Actual evaluations of these matrices can be
done either by straightforward differentiation of
the positional constraint equation according to
the definition, which is simple task for the com­
monly encountered closed kinematic chains for­
med in a plane, or by starting directly from
velocity and acceleration constraint of the closed
kinematic chain as in Freeman(1985). When spa­
tially closed kinematic chain is involved in the

system topology, the latter approach should by
appealing in view of the algebraic complexity of
constraint equations constructed through loop­
closer method, which may be a discouraging
process itself.

3. Spatial Kinematics· by Constraint
Embedding

Once the first and second internal KIC matrices

[G] and Ililll are found for the system, actual
motion of various part of system in three dimen­
sional Cartesian space can be found in terms of
motions of independent coordinate t/J.

Supposing all the joints are properly indeJl:ed
using positive integers and introducing the con­
cept of virtual cut to virtually break every closed
kinematic chain contained in the system, a
multibody dynamic system can be considered
topologically equivalent to a kinematic tree (Hus­
ton et al. 1979). Figure 2 shows a kinematic tree
found by applying virtual cuts to the system given
in Fig. I with some exaggerations made to empha­
size cut joints.

In connection with kinematic tree, body indices
are assigned as follows. The index 0 is assigned to
an inertially fixed body or a body whose motion
is prescribed in time. Now, noting that a unique
direct path from the body 0 to any point (or a
body) can be found by using the kinematic tree,
the indices of the remaining bodies can be as­
signed in such way that they take the same indice
as that of the joint which initially meets the body

Fig. 2 Spatial Kinematics of constrained system

along the path defined from body 0 to the body of
interest. It is important, in this process of assign­
ing body indices, to note that the indices of
virtually cut joints play no role in finding body
indices, and that the intermediate coordinate
frames arising from modeling non-simple joints
by a series of simple ones are also assigned proper
indices by considering them as imaginary mass­

less bodies.
For easy references two additional sets of in­

dices are defined as follows: set of body indices v
={Vi: ViEZ with i=l, "', K} where Z denotes
the set of nonnegative integers and K is the
number of bodies involved in kinematic tree, set

oflink indices W={Wi: WiEZ with i= 1, ... , L}
where L is the number of physically existing rigid
bodies with fixed mass contents. An obvious
inclusion relationship among these two sets and
the set u introduced in previous section is W <:;; V
<:;;un{O}.

The interconnection structure of bodies in a
kinematic tree can be fully characterized by a
mapping T( . ) called connection map (HUston
et al.(1979». The mapping T( • ) is designed to
operate on the set of body indeces v and describes
the connection structure of the bodies in the
kinematic tree, such that starting with a particular
body index it successively defines the index of the
body connected downward along the path.

The above table shows associated connection
map T( • ) for the kinematic tree described in Fig.
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(25)

Using Eqs. (II) and (22), three different cases
may be distinguished in evaluation O~j/O¢n as
follows:

if join j is prismatic

. 10 if joint j is revolute and indepen-

~$~ = a~~n) ~ent. .
[G]s(J)n If JOll\t j IS revolute and depen-

dent

where the Kronecker delta attn) equals I if j = p
(n) and °if j=l=p(n), and [G]~(j)71 denote ~(j)th

row and nth column element of the first order

internal KlC matrix [G], which is equal to oq~U)/

OrPn as shown in Eq. (II). Note that when the
dynamic system contains no closed kinematic
chains, the last case in Eq. (25) is eliminated and
the summation in Eq. (24) can be reduced to a
single term as in Thomas et al.( 1982). Here,
without elaborations all possible cases may be
expressed in the form of weighted linear combina­
tion of vectors Zj'

(24)[ k] k1'LGr :n=~ :l-l.J Zj
J>O Ulfln

2. Thl~ first and second rows totally define the
map T(·). For example, it can by easily seen
from the table that body 9 is connected to body °
via bodies 6, 2, and I.

Basic convention in setting up local coordinate
frames is assumed as follows: local zraxis is
defined fixed on body j, collinear with the axis of
rotation or direction of sliding depending on
whether the joint j is revolute or prismatic, and
xrand Yraxis fixed in body are properly selected
to lie in the plane perpendicular to zraxis such
that us,ual dextral rule in satisfied. From now on,
all the vectors which appears in equations will be
assumed to be expressed W.r.t. the same inertial
coordinate frame fixed in body 0.

3.1 Angular velocity
Suppose a body with index k in the system is of

concern. Recalling that relative rotational mo­
tions between bodies can be collected along ap­
propriate dinematic tree by using associated con­
nection map, the absolute angular velocity of the
body h can be expressed in terms of the relative
angular velocities between neighboring bodies
defined by the connection map as

where the subscript: n is used to denote whole
components of the nth column vector of the
matrix to which it is attached. Equation (21)
implies

Note the relative angular velocity of body j W.Lt.
body T(j) is given by

wJU) = {~jZj ~f ~o~nt j ~s re:olut~ (22)
o If JOll\t j IS prIsmatic

where ,pj denotes Lagrangian joint coordinate
represlmting proper component of either t/J or q.

It should be pointed out that the summation in
Eq. (21) should be interpreted as being performed
downward, starting from body k, along the
kinematic tree until the inertially fised body 0 is
reached.

The first order rotational KlC of body k W.Lt.
an ind,ependent coordinate rPn is defined as a 3 X

I vector

(28)

(26)

(27)

3.2 Translational velocity
Suppose a point fixed in body k is of interest

and let R k denote the position vector of the origin
of the local coordinate frame fixed in body k w.
Lt. a reference coordinate frame fixed in body 0,
pi be the position vector of the point of interest w.
r.t. the local coordinate frame fixed in body k,
and [TJi'] be the direction cosine matrix of the

OWk ~ {' -
-:l-l. = +-<((i p'ja~(n)+(1-P'j)[ G]su;,n}Zj
U~n J> -

where aj equals I if joint j is revolute or °if joint
j is prismatic and P'j equals I if joint j is indepen­

dent, or °if joint j is dependent. The final form
shown in Eq. (26) gives the expression of the nth

column vector of first order external rotational
KlC matrices [G,k]ER3

xN associated with body
k. Now, the absolute angular velocity of body k
can be expressed as

or in matrix form as

(23)

(21)
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(36)

(37)

(39)

(35)

(38)

(41)

(42)

(46)a - -a¢im ([ G],>:(i)n)=IIHII,>:(i)nm

with

Only the term d/dt([ G:ln) involved in the sec­
ond summation in Eq. (39) requires further treat­

ments as follows: Expand d / dt([ G:ln) as

dNa .
Q'i([ G;]n) = ~l arPm ([ G;]n) ¢im (40)

where in view of Eqs. (23) and (26)

a~m ([ G:ln)

= a~m [~ai{{3i3p(n)+(1-{3,)[ G],>:(i)n} Zi]

= ±ai{{3i3t(n) + (1 -{3i)[ G],>:(i)n} aa;:
z>O "Pm

k a-+~ a;( 1-{3,) ad-. ([ Gh(i)n)Zi
z>O 'f'm

or in matrix form as

3.3 Angular acceleration
Differentiation of Eq. (27) W.r.t. time produces

the expression of the absolute angular accelera­
tion of body k as

and

where Illllls(i)nm is the s(i)th plane, nth row, and

m th colum~ element ofthe matrix Illlll defined in
Eq. (15).

Successive substitutions of Eqs. (40) through
(46) into Eq. (39), and some rearrangement, lead
us to the final expression of the absolute angular

acceleration of the body k as

(32)

(31)

(29)

[G:ln= ~~:
where

JPk _ k {~ ~ _}
JrPn - j~ JrPn Zj or a¢in Zj X (Pk Rj)

Noting that

a1rj _{3£(n} if joint j is independent (33)
a¢in - [G],>:U)n if joint j is dependent

and substituting (33) into Eq. (32) lead to

8Pk k . -
~8d-.= ~[(I-aj){/N)~(n) +(1- ,BJ[ G],>:(})n}Zj

l.p n »0

+aJ{,BjM(n) +(1- ,BJ[ GJ~(})n}Zj X (Pk - RJ]
(34)

where R k is assumed to be bulid along the
kinematic tree structure. Differentiation this equa­

tion in time yields the expression for the absolute

linear velocity of the point as

where Rj denotes vector measured from origin of
inertial coordinate frame fixed in body 0 to orgin

of local coordinate frame fixed in body j. Note
that since each joint has only one degree of free­
dom, one of the two terms in Eq. (30) will have

effect depending on the joint type. The first order

translational KIC of a point fixed in body k W.r.

t. a independent coordinate ¢in is defined from
Eq. (30) as a 3 X 1 vector

where aj and {3j were defined previously. The
final form shown in Eq. (34) gives the expression
of the nth column vector of the first order external

translational KIC matrix [GnER 3XN associated
with a point fixed in body k. Notice that each

column of [Gtk ] is formed by weighted summa­

tion of vectors Zj and Zj X (Pk - RJ.
The absolute translational velocity of the point

fixed in body k can be expressed in terms of the
first order translational KIC matrix as

local coordinate frame fixed in body k W.r.t. the
coordinate frame fixed in body O. Then, by using

kinematic tree position vector Pk of the point of
interest W.r.t. reference coordinate frame fixed in

body 0 can be expressed as
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where subscript :nm denotes 3 X I vector made of
elements located at nth row and m th column of
each plane of a three dimensional matrix. Rewrit­
ing Eq. (47) in mtrix form gives

ak=[G:]~·n+ ~T®IIH:II®~ (48)

where the scond order rotational KIC matrix
IIH:IIE:R3xNXN is formed by linear combination

of vectors as
k _

I/H:llnm= ~oa,(l- tS';)IIHII.~(i)nmZi
<>
k k _

+~ ~ aiaAtS'i8tcn) +(1- tS',)([ G]~u)n}
i>Oi>O

{tS'j8~(m)+(1- tS'J([ GJ~(j)m} Zj X Zi
(49)

Note that single summation and double summa­
tion terms in Eq. (49) respectively shows indirect
contributions of motions of dependent joint coor­
dinates q through the second and first order
geometric coupling with the motion of indepen­

dent joint coordinate 9.
3.4 Translational acceleration
To find the absolute translational acceleration

of a point fixed in body k in terms of motions of
independent joint coordinate 9 costs more efforts
than it is required to find angular acceleration.
Here, Icmgthy algebraic details will be omitted
and only the result is presented below(refer to

[Thomas 1982 and Cho 1989] for complete deri­
vations).

The absolute acceleration of a point fixed in
body k can be found as

N •. N N .•

Pk= ~ [Gnn¢n+ L: L: IIHt'llnm¢n¢m
n=l n=lm=l

(50)

or in matrix form as

Pk=k[ Gt'] ~+ ~T®IIHtkl/® ~ (51)

where the second order external translational
KIC matrix IIHtkllE:R3XNXN is defined by the
collection of vectors as

IIHtkllnm= a;J[Gnn) (52)
k T(i) . _

= ~ ~ (1- a,)aAjj';O'p(n) +(1- P'J[ G]~(i)n}
i>Oj>O

UljO'tcm) +(1- P'j)[ G]~(j)m} Zj X Zi
k k _

+~ ~a,(l-aj){fMt(n)+(I- P'i)[ G]~c,)n}
i>Oj>O

{P'iO't(m) +(1- P'j)[ GJ~(j)m}Zi X Zj
k T(i) _

+~ ~ aiaj{P'iO't(n) +( 1- P'.)[ G]~(i)n}
i>Oj>O

{P'iO't(m) +(1- P'J[ GJ~(j)m}(Zi X (Zi X (Pk - ¢J»
k k _

+~~ aiaAP',O'p(n) +( 1- P'J[ G]S(i)n)
i>Oj>O -

{P'jO't(m) +(1- P'j)[ GJ~(j)m}(Zi X (Zj X (Pk - RJ»
k _

+~IIHlls(i)nml(l-aJ(I- P',k
1>0 -

+aAI- P'JZi X (Pk- RJ) (53)

Notice again that all the first and second order
geometric couplings between dependent and in­
dependent joint coordinates through kinematic
constraint are shown explicitely in th(: expression.

4. Dynamics

Since all the kinematic information of a con­
strained dynamic system were compactly expres­
sed in terms of ~ and ~. in the previous section,
it is direct to find the equation of the motion of
the system by using the fundamental equation or
Lagrange's form of d' Alembert's prin­
ciple(Rosenberg, 1977). Here, some additional
cares will taken to express the dynamics of the
system in an isomorphic form independent of
particular coordinate used(see the left-hand side
of Eq. (71).

The fundamental equation of body k can be
written as

A k =' r (Pdm- jdvMP (54)lv.
=mk(PkC&) • PkC+(Wk8t) • (Ii< • ak

+ Wk X (Jk • Wk»
- PkC& • F kt - wk& • T kt + 8Wk (55)

where A k represents the total virtual work done
on bydy k, pkC and PkC denote the absolute
velocity and acceleration of the center of mass of
body k, respectively, F kt and T kt respectively
represent the net force and torque applied exter­
nally about the center of the mass, [k is the inertia
dyadics of body k expessed w.r.t. local coordinate
frame with its matrix representation being denot­
ed by [Jk], and finally 8Wk symbolizes the virtual
work done by any internal active forces or/and
torque(e.g., actuation force/torque).

Recalling that motion of the bodies in the
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system can be expressed in terms of independent
joint coordinates, the term in Eq. (55) can by
rewritten as follows. The first term becomes

mk(pkCat) . PkC
= mka~T[G,kcy([ G,kC] ~'+ ~TQ9IIH,kCIIQ9~) (56)
= mka~T([G,kCn G,kC] ~'+ ~T

Q9i1[ G,kcYEBIIH,kCIIIIQ9~) (57)

The second term can be expressed as

«(J)kat) • Uk • ak+ (J)k X (Jk • (J)k»
= a~T[G;nnk]([ G;]~'

+ ~TQ9IIH;IIQ9~)

+ a~T[ G;Y(([ G;]~)
X ([n k

][ G;]~» (58)

where the inertially referenced inertial matrix
[nk] for body k is defined by

[nk] = [T2][Jk][ T2] T (59)

To arrange this result into a more structured form

compatible with Q9 operation, notice that the

vector identity a • ( b X c) = c • (a X b) implies that

[G;VCC[ G;]~) X ([nk][ G;]~»
=([nk][ G;] ~V([G;Y X ([ G;]~» (60)

where

[G;Y X ([ G;]~)

r(L:r[ G;h X [G;L~Y1

l
(~r[Gn2X[G;L1'Y (61)

- (~r[GnN~[G;L¢Y
=11[G;]x[G;]IIQ9~ (62)

with the three dimensional matrix II[ G;] X [G;]II
of RNx3XN being defined as

i.e., j'h column vector of i'h plane of three dimen­

sional lmatrix II[ G;] X [G;]II is formed by cross
product of i'h and j'h column vectors of the first
order rotational influence matrix of body k.
Using Eq. (60), Eq. (58) can be rewritten as

«(J)kat) • (Jk • ak+ (J)k X (Jk • (J)k»
= a~T {[ G;Y[nk][ G;]~'

+ ~TQ9«[G;Y[nkDEBIIH;11

+[G;nnk]ll[ G;] X [G;]IIQ9~} (64)

The third and fourth terms in Eq. (55) are
expressed as

pkCat • Fk'=a~T[G,kCYFkt (65)
liJkat • Tk'=a~T[G,kYTk' (66)

Substituting Eqs. (57) through (66) into Eq.

(55) and summing the result over the set of link
indices w, we obtain

a~T{[It,] ~'+ ~TQ9IIPt,,11~

- ~ ([G,kcYFk'+[G,kYTk')}+ L: awk=o
hEW hew

(67)

where the generalized effective inertia matrix [It,]
ERNXN w.f.t. ~ is defined as

[It,]= ~ (mk[Gtcy +[GtC]
kEW

+[G,k][nk][Gm (68)

and the matrix Ilpt"IIERNXNXN, which explains
coriolis and centrifugal forces, is evaluated as

IIPt"II= ~ {mkll[G,kCy Ell IIHtcl1 II
kE W

+ 11([ G,k] T[nkD Ell IIH;IIII
+ II[ G,knnkDII[ G;] X [G;]IIII} (69)

Finally, noting that net virtual work done by

the active internal forces may be expressed as

~ aWk=a~T(T,+[GYTq) (70)
kEW

where T, and Tq are" joint torque vectors as­
sociated with the primary and secondary joint

coordinates of the system, respectively, and also
that virtual displacement vector l' is independent
and arbitrary, we establish the dynamic equation
of the system as

[It,] ~'+ ~TQ9IIPt"IIQ9~
= ~ ([ G,kcYFk' +[ G;YTk')

kEW

+(T,+[GYTq ) (71)

When Tq =1= 0, the system is generally under antag­
onistic operation mode(i.e. superabundance of
input forces) and interesting spring-like stiffness
properties may be observed due to nonlinear
geometric nature of constraint imposed on the
system (Cho et aI., 1989 and Yi et aI., 1990).

5. Isomorphic Transformation in
Kinematics and Dynamics

In previous sections, it was shown that all

kinematics and dynamics of the system could be
expressed in the same structured format in terms

of motions of generalized coordinate vector ~.
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and

where

(84)

(85)

IIPziuulI=[Gt]-T
@11[Gn rEl1llpziuull-- [I/¢]
El1IIHM 110[Gt]-!

and

As the second example considt:r the case of
mixed transformation. Given three sets of coordi­

nates ¢, (J, u, (G,n [GI], and dynamics W.r.t. ¢

as

order kinematic relations between two general­
ized coordinates, it is simple to conclude that the

dynamics W.r.t. u is given by

TU=[Gt]-TT¢ (81)

=[GtlT([I:¢]~'+~T01IP:¢,,1!0~) (82)

=[I,tJii+ uT011pziuuI10u (83)

T¢=U/¢] ~'+ ~T01IN¢¢110~ (86)

the dynamics W.r.t. mixed coordinates t/J, (J, and u
may be found follows.

1'0=[ G:J-TT¢ (87)

=[ GI]-T([U¢] ~+ ~T01IP:¢¢110~) (88)

=o[ G:J-T[I/¢] i3' +([ Gt]-l uV

01Ip/¢¢110([ GtJ-l u) (89)

=(Io'¢]~'+uT0(Potu)0u (90)

where

Here, it is demonstrated by examples that how
this isomorphic formalism help one transform

informations expressed in one coordinate system

into another. Let t/J and (J be two sets of general­
ized coordinates, and u be any third set of coordi­
nates including pseudo-coordinates whose

motions(i.e., u and ii) are to be found.
Consider the case of transformation of

kinematic informations. Since it is not possible in
general to completely specify system's
configurations(i.e., relative positions and orienta­

tions of bodies in the system) in terms of a set of
nonintegrable pseudo-coordinates, it may be sup­

posed that initial formulations were done in terms

of a set of generalized coordinates t/J as

u=[Gt]~, (72)

ii=[Gt]~'+~T01IHt¢110~, (73)

and the first and second order relationships

betw{:en t/J and (J are known as

6=[G:]~, (74)

ii=[G:J~'+~T01IHI¢110~, (75)

when: the Jacobian matrix [GI] is assumed to be
nonsingular. Now to reestablish motions of u in
terms of new set of coordinates (J, Eqs. (74) and
(75) are solved for 6 and Ii and results are
substituted into Eqs. (72) and (73) to yield

u=[ G.fJ 6, (76)
ii=[GoU]ii+ 6 T0[HfoJ06, (77)

where

(78) (92)

As examples of transformation of dynamics
betwetm different sets of coordinates, two typical
cases of particular importance in practical appli­
cations are considered. As the first example as­

sume [Gt], [Ht¢], and dynamics! W.r.t. general­
ized coordinates (1

T¢=[It¢]~'+ ~T01IP/¢¢110~ (80)

are given and it is desired to find the dynamics w.
r.t. u. Then, starting from the force balance equa­

tion and successively using the first and second

and

IIHfoll=[GlJ-T
0111IHt¢II-([G,i'J [G:J-l)
El1IIH,i'¢11110[ GIJ-l (79)

This result may possess particular value in study­
ing the dynamic behavior of the system whose

velocities are measured in u coordiantes while
input generalized forces are applied at (J coor­

diantes.

It is important to point out that the transforma­
tions of kinematics or dynamics is possible only
in velocity and acceleration levels in general. In

other words, the configuration dependent terms

[G], IIHII, [[*], and IIP*II remains to be func­
tions of generalized coordinates initially em­
ployed. The reason is obvious when pseudo­
coordinates are involved in the transformations.
But even in the case of transformations between

two sets of generaralized coordinates the situation
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is unchanged because it is not generally feasible
to find global nonlinear relationships in closed

form bewteen two sets of generalized coordinates
but only the local homeomorphism (Apostol,
1974) through nonsingular Jacobian matrix is

possible.

6. Conclusion

In this paper a general kinematic and dynamic

modeling algorithm using kinematic influence
coefficients was developed. The algorithm is uni­

que yet general in the sense that it provides

complete closed form kinematic and dynamic
equations isomorphically expressed exclusively in

terms of motions(i.e., generalized velocity and
acceleration) of the independent joint coordi­
nates. The central tool of this formulation is the

constraint embedding through systematic use of

interal KIC matrices in kinematics and dynamics.
It is also pointed out that although the formula­

tion given here targeted the holonomically con­
strained systems, systems involving a class of

nonholonomic constraints can be similarly treat­

ed by strating directly from velocity constraint
relations.
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Appendix

Multiplication of two matrixes [A]ERnXnl and
IIBllERkXnlxt may yield IICIIERkx nt as
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[A]ER nlxt
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and IIBIIERkxnxm as

II elk = IIBII<8l[A]
=IIBlldA]

(99)

( 100)

where II ell becomes k X n X I matrix. No ® oper­
ation is defined on aly pair of three dimensional
matries.


